JOURNAL OF COMPUTATIONAL PHYSICS 119, 231-243 (1995)

Interpolation Schemes for Three-Dimensional Velocity Fields from
Scattered Data Using Taylor Expansions

NaDEeM A MaLik* anp TH. DrACOs

Institute of Hydromechanics and Water Resources Management, The Swiss Federal Institute of Technology, ETH Honggerberg,
CH-8093 Ziirich, Swirzerland

Received March 17, 1994; revised December 5, 1994

We present a numerical scheme that interpolates fietd data given

at randomly distributed locations within a three-dimensional vol-’

ume to any arbitrary set of points within that volume. The approxi-
mation scheme uses local trivariate polynomial interpolants and it
is shown to be equivalent to a Taylor expansion of the {velocity)}
field up 1o second-order partial derivatives. It is formaity a third-
arder scheme in the (mean} spacing of the data & i.e., the errors
scale with (8/A)3, where A is the length scale of the flow figld. The
scheme yields the three-dimensional velocity field {which can be
inhomogeneous and anisotropic) and all the 27 first- and second-
order partial {spatial) derivatives of the velocity field. itis compared
with the adaptive Gaussian window method and shown to be con-
siderably more accurate. The interpolation scheme is local in the
sense that it interpolates the data within locally defined volumes
defined as the set of points with the same nearest neighbours {which
may be set at between 10 and 15in number). This makes the scheme
- formally discontinuous in the flow field across neighbouring
patches; but by making use of the excess data within a local volume,
it is shown that for practical purposes the scheme does yield a
continuous flow field throughout the entire interpolation volume,
The scheme interpolates the data by an iterative method which is
extremely fast in situations where a certain level of error bounds
in the data {and, hence, also the solution) is acceptable. Results
from sinusoidal and stochastic {turbulent) test flow fields show that
the Taylor expansion scheme is widely applicable and highly accu-
rate for the velocity and first derivatives. However, the smallest
scale of the (velocity) field A must be greater than 54 for the best
performance. Second-order derivatives are less accurate. Flow
guantities such as the fractal dimension of streamlines can be ob-
tained accurately with much lower data density. Statistics like the
power spectrum of the fiow can also be obtained accurately. In the
presence of noise in the velocity data, smal! levels of noise have
negligible effect on the obtained velocities and a modest effect on
the first derivatives. The second derivatives are seriously affected,
and only those of the largest scafes in a turbulent flow can be
adequately resolved. @ 1995 Academic Press, Inc.

L. INTRODUCTION

The importance of the Lagrangian picture of particle motion
in flows has been appreciated (at least in the context of disper-
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sion phenomena), since Talyor’s [18] seminal work on random
walk models, but it is only in the last decade or so that a number
of research teams have begun to obtain the Lagrangian motion
of particles in fluid flows. Computational calculation of Lagran-
gian gquantities using direct numerical simulations (DNS) is
very recent, beginning with Yeung and Pope [21] and later by
Squires and Eaton [17]. Experimental wotk began only slightly
earlier when suitable cameras became commercially available
so that the accurate measurement of particle motion was made
possible, See Maas er @l. [12] and Malik et al, {14] (herein
after referred to collectively as MM93) and references therein
for a summary of recent Lagrangian measurement techniques,
known as particle tracking velocimetry (PTV). PTV techniques
typically yield sets of particle coordinates within a flow volume
V over a large number of consecutive time frames. In the three-
dimensional PTV of MM93, the cameras are mounted on a
moving carriage so that long particle trajectories can be obtained
for up to 1500 particles seeded in the flow.

An important technical problem emerges from PTV measure-
ments—to approximate the randomiy distributed velocity field
data on to a Cartesian grid. This is necessary when Eulerian
quantities are desired and for visualisations of the flow struc-
lures, because most graphics packages take regularly spaced
data as input.

Because measurements in a Lagrangian frame are relatively
new, the problem of interpolation from scaitered data on 10 a
reguiar grid has not received much attention until recently. An
important method for two-dimensional problems was intro-
duced by Hardy {9] which uses bivariate quadratic surfaces of
different curvatures called multiquadrics. Many workers have
found this method to be satisfactory especially in the context
of geophysical problems [10l. In geophysical problems the
scheme works well probably because the quadratic eigenfunc-
tions are a good leading order approximation to the profile of
hills and mountains. (A closely related type of interpolating
function is the thin-plate spline [8]. In fluid mechanics, Imaichi
and Ohmi [11] describe a two-dimensional interpolation tech-
nique based upon an expansion of the velocity field to first-
order partial derivatives; their application to vortex flow met
with adequate success. This scheme can be extended to any
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number of dimensions and to any order in partial derivatives,
although its effectiveness decreases rapidly with increasing
order. Agui and Jimenez [2) (AJB6) compared a number of
simple techniques, including polynomial interpolators and krig-
ing, but found little advantage over the adaptive Gaussian win-
dow (AGW), Kriging is a method that has become popular in
the field of mining. It is a linear scheme based upon the auto-
correlation of the dependent variable {which may be the concen-
tration of a substance in rocks} which is calculated from the
local data values; see [I, Chap. 10].) The AGW can also be
extended to any number of dimensions, but is not suitable for
obtaining higher than first-order partial derivatives (as discussed
later in this paper). However, it is simple and very fast to
compute. Recently Spedding and Rignot [16] have developed
atwo-dimensional thin-shell spline method (which is a variation
of the cubic spline} which they compare with the AGW of
AT86 and showed that the former yields results which are twice
as accurate within a suitable choice of parameters.

The numerical work of Yeung and Pope {20] [YP88] is
closely related to the present problem. They simulate a three-
dimensional turbulent flow field using direct numerical simula-
tions (DNS) of the Navier—Stokes equations and obtain the
Lagrangian movement (trajectories) of particles in the flow
from the information given at the nodes of the regular DNS
grid—this is the inverse of the problem addressed in this paper.
They present a number of different interpolation schemes, in-
cluding fourth-order cubic splines and third-order Tayjor expan-
sion schemes. (The latter is similar to the idea of Imaichi and
Ohmi [11] extended to three dimensions.) The splines were the
most accurate, but the Taylor schemes also performed well and
are considerably less intensive to compute.

The trivariate polynomiai scheme that we have developed is
shown to be equivalent to a Taylor expansion scheme. These
schemes are local in nature in that they use data from within a
neighbourhood of the point at which the interpolation is desired.

We compare our results with the performance of the AGW
which seems to have become the standard benchmark for these
purposes. The motivation for investigating more advanced
schemes stems from the obvious failure of linear schemes like
AGW to give acceptably small etrors in the interpolated quanti-
ties. AJ86 report errors of around 60% in a sinusoidal test flow
field, even when the wavelength of the flow field is five times
larger than the spacing of the scattered data. With the availabil-
ity of sophisticated instruments and move powerful computers,
it is anticipated that more research effort will be put into Lagran-
glan properties of flows and it is important to make available
accurate interpolation schemes and demonstrate the possibilities
and limitations of such schemes.

In Section 2 we describe the technical details of the trivariate
polynomial (Taylor) scheme and the AGW method against
which we compare the results. In Section 3 the simulation
results against two test functions are described; the simple sine
wave and the multiple-scales kinematic simalation (turbulent)
flow field. In Section 4 we look at the problem of continuity
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of the interpolated flow tield and test our method by computing
streamlines, fractal dimensions, and spectra in complex flows.
We conclude in Section 5 with an illustration from results from
a PTV experiment in a water channel.

2. INTERPOLATION SCHEMES

We assume that the coordinates and velocities of seeded
particles, say from a PTV experiment, are given and accurate
so that we are interested in the errors due to the interpolation
schemes only. (A briet discussion of the reduction in computa-
tional cost when high accuracy is not required is contained
towards the end of Section 2.2.) The velocity field need not be
homogeneous or isotropic since the method is a loca! scheme;
interpolation is performed within small local volumes con-
taining a limited number of data points,

Consider a volume V =[xy — Xy X230 — Xas L0 = Xaml
within which we are given the velocities at N, (different) poinis;
i.e., we are given {x} = {{x", u") = ((x{, x5, x5, (0 (x"), w(x"),
w(X)))|x* € V,n = 1, ..., N,}. The (mean) spacing of the data
is & = (V/N,)'”. The mathematical problem is to estimate the
velocities and the 27 tirst and second (spatial) partial devivatives
of the velocity field at an arbitrary set of M (=1) locations
{x*} = {x} within V. In particular, we desire to interpolate the
data on to a cubic grid of nodes with regular spacing of &,
8y, 63, Without loss of generality we will take N, nodes on
each side so that 4/ = N and we will take d,, = &, = &, =
8, = &

2.1. Linear Adaptive Gaussian Window

For the simple linear adaptive Gaussian window (AGW) the
velocity at a point x* € V is given by (AJ86),

Ei\ila"u?
o =123 ()

Enl] a"

u{x*) =

where the u" are the velocities at X". The coefficients o” are
given by

(2)

—(x* — x“}z)
H? ’

a" = cxp(

where H is the size of the Gaussian window. AJ86 defined two
non-dimensional quantities based on the spacing &, namely
H* = H/& and A* = A/d, where A is the length scale of the
flow field, say the wavelength if the flow is a sinusoidal velocity
field. In more complex flows A must be estimated from the
physics of the flow; for example, in turbulent flows A would
correspond to the Taylor microscale. AJ86 report that the opti-
mum window width was # = 1.244.

In the present work, we have used the above AGW scheme
as 4 benchmark to compare with our trivariate scheme. (We
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use a slight modification of (1) in that we do not sum over all
n particles in the volume V, but only over those particles, x*,
which are within a correlation length of x*, where [x* — x*|
= A. This speeds up the compuiation and we have found that
this does not alter the results because velocities further away
from x* than a correlation length have no significant effect on
the velocity at x* by definition.)

2.2, Trivariate Polynomial (Taylor) Schemes

There are a number of important differences (summarised
in {5, 6]) between univariate interpolation and multivariate
interpolation which invalves approximating functions of more
than one real or complex variables. Practically, though, the
most important feature is that multivariate approximations are
considerably more expensive to compute—if there are p inde-
pendent variables and one desires to approximate a function at
say g points in each variable, this gives a total of g7 values
to compute.

The special case of interpolation on a Cartesian grid presents
no special conceptual difficulty because the tensor product of
1 univariate interpolation operators is an s-variate interpolation
operator. Specialising to polynomials, it can be shown that
trivariate interpolation on a three-dimensional Cartesian grid

{(rns,0):0=i=n0=j=m0=k=1} (3}
is uniquely possible by a polynomial of the form
P(J", ¥, I) = 2:;0 Z::() Z;:o a,}#nr"sﬂtﬂ: (4)

the polynomial subspace that this tensor product involves is
I1, X IL, X I, where I1, is the linear space of all polynomials
of degree less than or equal to n. The elements of this subspace
are finite sums of the form

pr,s,0) =X wNutswdn) (i €T, v, € N, w, € TL);
(3)

these elements are representable as in Eq. {(4), and by the general
theory of tensor products the dimension of this space is
([ + 1}m + 1)(rn + 1). Hence, the uniqueness of the represen-
tation in Eq. (4) follows, since the interpolation on a grid of
(I + 1)(m + Dir + 1} nodes is certainly possible (see [15]).

For polynomial interpolation at n, nodes not regularly distrib-
uted in R%, a system of linear equations is nonsingular with
probability 1. (The case where there are no exploitable patterns
in the nodes is called the case of *‘scattered data.””} One can
use a trivariate scheme and select a set of n, monomials r*s#t"
and solve for the coefficients in the equation

Z Ayt isitl = A, 1 =e=n, (6)
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For the scattered data problem at hand, where we are given
scattered velocity field data, suppose that we want to approxi-
mate the velocity u at a point x* = (x%, x3, x%). Then let us
define local variables r = &, = (x; — x7), s = 8¢, = (x; —
x¥), t = & = (x3 — x%). Then the trivariate interpelation
scheme represented by (6) for scattered data in three dimen-
sions, using polynomial interpolators from IT(R), is equivalent
to the local Taylor expansion of the velocity field about the point
x* up to second-order dertvatives, viz. {for the ith component of
the velocity)

du \ ¥
AX) = w(x®) + ax; | —
iX) = w(x”) Z ! (6X;) (7

r 2‘
+2 Zﬁxjﬁxk( 3.',‘1‘

= dx; ax;

ES
) + @&, i=1,2,3,

!

where we identify A, = (u;).. The ' on the summation is a
reminder that there 1s a factor of 2 in the summation whenever
J # k due to the symmetry of the terms in these cases. The
remainder terms &, are formerly proportional to Q]8x|® which
makes the above expansion a third-order scheme; in non-dimen-
sional units, R, is proportional to (8x/AY. The star on the
derivative terms indicates that they are evaluated at x*. The
coefficients a,,, are equal to the various partial derivatives (up
to second) of the velocity at x*.

We now introduce a new set of notations in which each
derivative term is regarded as an independent quantity. Let &x)
represent a 30-component vector whose entries are as follows:
the first three components are the velocity components at X,
viz. (&, &, &) = (uy, u, W3); the next nine terms are the nine
first-order partial derivatives of the velocity at x, viz. (&, &,
&, ...) = (0w/ax,, duy/ox,, dusldx,, du,/ox,, ...); the next 18
components are the second-order partial derivatives of the ve-
locity field at the point x, viz. (&3, &1z, &5 Eiss G179y o) = (2uy/
axy, uploxt, Fusfoxt, udox ok, dunloxdx, L),

In this notation, (7) can be expressed in the simple form
{Einstein’s sumination convention for repeated variables im-
plied)

w{x)=a &5+ R, i=1,2,3. (8)
gy is different from that used in Eq. (6); a; is now a matrix
with entries equal to the monomials dx{éxgdxy with 0 = v +
s+ = 2;and & = &x*). In order to evaluate the 30
independent variables in & we need 30 conditions. This is
supplied by the 10 nearest data points at which we are given
(x, u). Hence (ignoring the remainder terms),

ul =afd*, i=1,23n=12..,10
where n is an index to indicate the nth particle; " is thus a
3 X 30 order matrix. If we bring all components of the velocities
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(a) Log-log plot of rms errors in the velocity, normalised by the mms velocity #', from AGW against A* = A/$ for different values of H* =

Hi&=05,1,124, 1.5, 2. Test flow is a sinusoidal wave with wavelength A. H is the size of the Gaussian window, and & is the mean data spacing. A line
of slope —1 is shown for comparison. (b} Log-log plat as in {a}, but for the Taylor schemes—TN18, TN, TN12, TN13, TN15, TN18. A line of slope —3

is shown for comparison.

at the 10 nearest data points into a single (ordered) vector UL,
and, similarly, if all the coefficients @* are brought into one
large matrix #, then this equation can be expressed elegantly as
W, =58, ij=1,2,..,30 )]
Thus, the mathematical problem posed by Eqs. (3) and (4)
for the 30 unknown components of the velocity and its first
two derivatives is reduced to a Taylor expansion of the velocity
for each of the 10 nearest data points. We need to solve (9),
which is a system of 30 independent simultaneous linear equa-
tions in 30 unknowns, and it can be solved exactly by standard
methods. In fact, we can smooth the velocity field by making
use of the excess data that lie within a correlation fength of x*
by extending the number of nearest data points at which (9) is
simultaneously solved and a least square solution can then be
found. If N (=10) is the number of data points that are used
in solving (9), then of is a 3NV X 30 order matrix.

In general, an n X n system of linear equations requires of
the order of n*/3 operations to solve using Gaussian elimination.
However, & is a sparse matrix because two-thirds of the coeffi-
clents are zero and it is sometimes more efficient to solve such
systems of equations by iterative methods (see [3, Chap. 8.6]).
If the number of iterations needed to solve {9} is m, then the
number of operations needed is (approximately) of order mn?,
and this method i1s more efficient than Gaussian elimination
provided m <t n/3. If the exact solution is desired then m =
N/3. If maximum accuracy is not required, then m << n/3 and
considerable time may be saved. For example, if the relative
error (significant figures) in the velocity or the coordinates is
smaller than 107* then from the Taylor scheme TN15, with
N = 15 nearest data points (n = 3N = 45), we have found that
m = xn/3 = 15 iterations on average. (We have labeled the
Taylor schemes according to the number of data points N (=10)
used in the local interpolation. Thus TN10 is the Taylor scheme
using & = 10 nearest data points, etc.) However, if the relative

a — — b — . . — :
-0.25 o N=10 increasing & = 10 J
. -0.5t \'
i N =18
o —u.1s g 0.8 \
E S R
2 = E
‘.E -1.2% :E
E E
-1.5 g
F o_1s
-1.75F
-2 0.7 7.4 LN ) 1 1.3 -2 T3 T3 T GRS T 1.2
PNeY/y A (A8
FIG. 2. (a) Log-log plot as in Fig. la, but for the first derivatives and for H* = 1. A line of slope —1 is shown for comparison. (b} Log-log plot as in

Fig. 1b, but for the first derivatives. A line of slope —2 is shown for comparison.
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F1G. 3, Log-log plot as in Fig, 1b, but for the second derivaiives. A tine
of slope —1 is shown for comparison.

errors are, 1072, 1077, 107! then we obtained, respectively, m =
8, 2, and 1, respectively. In absolute terms, to give some idea
of performance on current machines, the following was ob-
tained on a SUN SPARC 2 station: for a total of 1000 data
points in a unit volume, interpolated on o a 10 X 10 X 10
Cartesian grid, the TN10, TN13, and TN15 schemes took,
respectively 33s, 455, and 50s of CPU for a relative accuracy
of 107, For a relative accuracy of 107! they took, respectively,
8.7s, 10.5s, and 11s of CPU. These times also include the time
for sorting the data near each point of interpolation which is
the same for each of the different TN schemes. Nevertheless,
a speed up factor of about 5 was obtained from the TN15
scheme for the 10% error level over the case with (almost} no
errors. In the present work, to show the limits of the interpola-
tion scheme, we desire the maximum accuracy, som == n/3 = N.

Finally, in this section we note that the Taylor scheme pre-
sented here is equivalent to YP38 in the special case in which
the “*scattered’” data are forced to be at the nodes of a grid
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FIG. 4. The rms error in the velocity, normalised by the rms velocity u’,
against N, the number of points used in the Taylor schemes. Different values
of the A* as indicated.
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L/ as indicated,

such as in the DNS, (except that YP88 also expanded to one
extra third-order term in (7), which is not required here).

3. TEST FUNCTIONS

3.1. Sine Wave

We have tested the AGW schermes and the Taylor schemes
on two important classes of test flow fields. The first is a single
length scale sinusoidal velocity field, similar to that used by
AJ86, and the second is a stochastic flow field, similar to
turbulence (see Section 3.2).

The sinusoidal flow is given by

u(x) = 2A sinfx - x). (10}

We define & = [#| and the wavelength as A = 27/k. The rms

normalised rins error

—
=0.25 [ 0.25 0.5

LICTEY

1.25

FIG. 6. Log-log plot of the normalised rms error curves in the velocity,
and first and second derivatives against the normalised Kolmogorov scale.
From the stochastic test flow with L/8 = 100 and using the TN15 scheme.
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FIG. 7. Rms error in the velocity, normalised by the rms velocity o',
against the percentage of noise in «', using the TN15 scheme on sinusoidal
test flows. Different values of A* as indicated.

power (velocity) of this flow is |4! which is chosen to be equal
to unity.

To test the accuracy of the interpolation schemes, we take
the velocities at randomly located points uniformly distributed
within a cubic test volume V of unit dimensions as the input data.
In each simulation we generated 15’ random points, uniformly
distributed, within the volume V, which gives a spacing of § =
(V/15%)* = 1/15. We then interpolated the data on to a regular
grid ‘of spacing equal to & The rms errors were evaluated
between the interpolated and true quantities (obtained from Eq.
(10)) at the inner grid points which do not lie on the outer
surface of the volume (because these are extrapolations and
can be serious in error), which gives an ensemble of M = 14° =
2744 points.

The rms errors are normalised by the rms power of the
corresponding signals, and they are presented as functions of
the non-dimensional parameter A* = A/d. This quantity is a
measure of the density of the data relative to the length scale
of the flow; sparse data corresponds to low values of A* and
dense data gives large values for A*.
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In the case of the AGW, we have also re-examined schemes
for different sizes of the window H* = H/&. Figure la shows
the log-log plot of the normalised rms errors in the velocity
from the AGW schemes against A* for different values of H*.
The schemies scale linearly with A* as expected. However, we
cannot confirm AJ86’s result that H* = 1.24 is the optimum
value that minimises the interpolation errors. Qur results show
that H* = 1 gives more accurate results, although the difference
is small. H* = 1 does indeed seem to be a more natural value
to take. The behaviour for H* = 0.5 is anomalous; for small
values of A* it is slightly more accurate than the other values,
but deteriorates for large values of A*. This is because such a
small value of H* brings the Gaussian scheme close to the
behaviour of a nearest neighbour scherne.

Applying the Taylor schemes to the same problem as above,
we obtain Fig. 1b for the velocity. In Fig. 1b we compare
TN10, TNIT1, TNI2, TN13, TN15, and TNI8. The schemes
are third order in A* and the curves asymptote between TN13
and TNIS5. But the inclusion of just a single extra data point
produces a striking reduction in the error between TN 10, TN11,
and TN12—the error is roughly halved. This is probably due
to the large factor increase in the number of sets of solutions
which are smoothed to obtain the least squares estimate: from
TNI10 we get one (unigue) set of solutions; from TNI1 we
smooth over 11 sets of values (a factor increase of 11 over
TN10); from TN 12 we smooth over 66 sets of values (a factor
increase of 6 over TN11). Also, there is diminishing accuracy
as the next included data point is further away from the point
of interpolation. We will adopt TN15 as the standard scheme.

In both Figs. ta and 1b, the error curves flatten off for
small A* = 2.5 (log{A*) = 0.4). In this limit the Taylor series
expansion, Eq. (7), is not accurate because the non-dimensional
data spacing &/A is large. AGW and TN schemes produce
similar errors in this limit in excess of 100%, so interpolation
is not efficient when the spacing of the data is of the same
order as the length scale of the flow. Efficient interpolation can
only be performed for cases when § << G.4A.

For 10% rms error in the velocity, the AGW scheme
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(H* = 1) requires a data density corresponding to A* = 10
(log{A*}) =~ 1), while the TN13 scheme requires only A* = §
(log(A*) = 0.7). For 1% error, the AGW scheme requires
unacceptably bigh data density of around A* = 50 (log(A*) ~
1.7). whereas the TNIS gives this accuracy with A* = 10
(log(A*) = 1).

Figure 2a shows the log—log error curve for the first denva-
tive from the AGW scheme which is equal to the average of
the rms errors in du/dx), du,/3x;, and dus/dx; normalised by
the rms power of the derivative which is equal to kja} = k.
The curve follows no particular pattern. For large A* the curve
flattens because in this limit the interpolation scheme 1s zeroth
order which means that the error does not depend on the spacing
of the data values. The derivatives are obtained by finite differ-
ence of the interpolated velocity, viz.

du; _ udx + 8x) — uilx; — dxy)

ax; 26x; ’ th
where 8y; = & is the grid spacing of the nodes at which the
velocity is calculated. The curve flattens off at about the 10%
errar level and the AGW scheme cannot yield better accuracy
than this.

Figure 2b shows the corresponding error curves from the
TN schemes. In these schemes, the velocity derivatives are
evaluated directly as part of the interpolation scheme. The
curves show a A*~2 behaviour, as we expect. The 10% error
level is achieved when A* =~ 6 (log{A*) = 0.78); 3%, when
A¥ =2 10 (log(A*) = 1); and 1%, when A* = 22 (log(A*) =
1.34). Figure 3 shows the corresponding resulis for the second
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0.4 |
I

.]
0.2 1
] 0.1 F 4
oF .
o | .
-0.2 J

-0.3 ! —1 i L 1 A 1 —L

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

FIG. 10. Streamline of a Burgers vortex tube in the z = 0 plane; exact
(solid line), interpolated using TNI5 (dashed). Vortex parameters are: the rate
of strain @ = 1, circulation v = 1, and the kinematic viscosity » = (.02, We
have R/6 = 3.2, where R, is the voriex core radius.
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derivatives, normalised by &*|A{ = k% We have from TNI5
10% error at around A* == 10 (log{A*) =~ 1) and 3%, at around
A* == 25 (log(A*) = 1.4). One percent accuracy in the second
derivative requires enormous density of data. {The second deriv-
atives can also be obtained in principle from the AGW scheme
using finite differences, similar to (11), but they are very inac-
curate.)

These results set stringent conditions for the practical appiica-
tions of interpolation schemes; to obtain acceptable accuracy
in the velocity and first derivatives, and qualitative accuracy
in the second derivative, one needs to have a spacing of data
on average at least 5 times smaller than the wavelength of
the velocity field. In other words, if we want to resolve the
Kolmogorov scale #, we must seed the flow with particles
spaced on average at a distance of 0.2 n. However, the sitnation
is not quite as severe as it appears, and in Section 4 we will
see that some important quantities can be obtained with good
accuracy from interpolation with relatively low data spacing.

The final result in this section is to test the Taylor schemes
as the number of neighbouring data points V is varied. Figure
4 shows the error curves in the velocity from the Taylor schemes
against N = 10 for different A*. The curves are for A* = 1,
2,4, 6, 10. Except for A¥ = 1 all the other curves asymptote
at or slightly before N = 15. N = 12 or 13 are also adequate
if accuracy is not the main consideration. This is the optimum
number of data points to use in a Taylor scheme. This knowl-
edge can be used to seed the flow with enough particles so that
there is almost certainly at least 15 seeded particles within a
correlation neighbourhood. 1t does not help to increase N much
more than 15, because the scheme sorts the particles in order
of distance from an interpolation point and the extra particles
will be further and further away from the interpolation point
and there will be diminishing improvement in accuracy as N
is increased further.

The TN schemes introduce no extra source of error like the
one introduced by the choice of 2 window in the AGW. Maxi-
mum use is made of the raw information and the TN scheme
is probably an optimum scheme for the scatiered data problem
without expioitable pattern. The only way to improve would
be if more knowledge s available about the instantaneous flow
pattern (which is difficult to obtain in turbulent flows). For
example, in separate tests on simple laminar and vortex flows,
the Taylor scheme works excellently, achieving accuracies
which are orders of magnitude better than that obtained from
sinusoidal flows or stochastic flows (described next).

3.2. Stochastic Turbulent Fields

The previous section saw the testing of the TN schemes with
sinusoidal flows. In the context of turbulence, we deal with
stochastic flow fields with a wide range of length scales and it
is important to quantify the interpolation errors that we can
expect in these types of flow fields.

We have therefore performed a second set of tests on stochas-
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FIG. 11, Streamlines as in Fig. 10, except for r = 0.00125 and for different data densities: B/8 = (a) 0.5; (b) 0.8; {c) 1.13; (d) 2.25. The dashed lines

are the interpolated streamlines and the solid line is the exact streamline. () The log—log plot of N(g), the number of boxes of size & that cover the interpolated
strearnlines obtained in (a)-(d), against the box size ¢. The solid curve s the case for the exact streamline. The fractal dimension (Kolmogorov capacity) D,
is the negative slope of this graph, which for the Burgers vortex is equal to 4/3 as indicated by a line with this (negative) slope. (The graphs from (c} and (d}

nearly overlap.)

tic flow fields generated by kinematic simulations (KS; [71).
KS generates stochastic fields (in any number of dimensions)
with a prescribed wavenumber-frequency spectrum £{%, w). In
high Reynolds number turbulence the wavenumber part of the
spectrum is proportional to k=37 over a wide range of wavenum-
bers, k, = k = k,. This can be simulated using the KS inertial
model [13]. An important feature of KS is that flow structures,
such as vortical zones, straining zones, and irrotational zones

are present in the flow field. The flow field thus retains spatial
and temporal correlations which can be matched approximately
to those observed in turbulent flows up to second-order two-
point statistics, provided that the random Fourier coefficients
and the wavenumber-frequency spectrum are chosen appropri-
ately (described in detail in [7]).

Of particular importance is to see how the interpolation errors
behave as the smallest and largest scales of the flow are varied,
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i.e., as a function of n* = n/§and L* = L/§, where n = 2n/k,
is the Kolmogorov iength scale and L = 27/k, is the integral
length scale. The dynamic range of the flow is & = Lin = k,/k,.

Figure 5 shows the log-log error curves in the velocity
{normalised by the rms velocity) from TN15 for different L/6 =
10, 20, 50, 100, against n*. For a given value of v* the errors
scale uniformly with 2. The errors are dominated by the scales
which are close to &, and we have seen from the previous
section that scales bigger than about 56 produce negligible
errors, Thus increasing L* (and so &) will not have a significant
effect on the rms errors other than to scale them with the square
root of the energy contained in the scales smaller than 54. The
total energy in the flow is kept constant; hence, increasing
the range of wavenumbers merely decreases the proportion of
energy in the small scales with which the errors scale. The
error curves are close to a —2 slope for large n*.

Figure 6 shows the log-log normalised error curves in the
velocity and the first and second derivatives for L¥ = 100
obtained from TN135. Curiously, the error curve for the velocity
is slightly steeper than —2 and that for the first derivative is
slightly shallower than —2, which is surprisingly accurate, since
we might reasonably have expected the errors to scale like — 1.
The unexpected accuracy in the first derivatives is due to the
fact that the flow fields are not entirely random and they do
exhibit locally correlated regions of structured flow, as ex-
plained earlier. Errors at nearby points will also be correlated
and taking the ditference of velocities at nearby points subtracts
off the correlated parts of the errors. Since a derivative is the
Hmit of this difference divided by the distance between them
as this distance becomes small, the derivatives will be mmore
accurate than otherwise expected.

The second derivative is nearly zeroth order and remains of
the same order of magnitude for all values of 7*.

3.3. The Influence of Noise

In experiments there is always a certain amount of error in
the data. The influence of errors in the coordinates of the data
and in the measured velocity can be important, so we have
conducted a number of numerical simulations with imposed
random errors in the coordinates of the data points. I the
measurements are obtained from PTV experiments of MM93,
then these ervors are <<3% of the rms velocity fluctnations u’ =
1 mm/s.

We have repeated some of the runs for the sinusoidal test
flow with TN15. Noise levels of up to 7% in the velocity were
tested (errors in the location of data points are equivalent to
putting extra noise in the velocity because in PTV experiments
the velocity is obtained from the seeded particle iocations and
the errors in the two quantities are correlated).

Figure 7 shows the log—log error curves in the velocity
against the percentage of noise for A* = 4, 5, 6, &, and 10.
Figures 8 and 9 are the counterparts for the first and second
derivatives, respectively. The errors in the velocity are not
seriously affected by these low levels of noise and remain at
the same order of magnitude.

The error curves from TN15 for the first and second deriva-
tives show interesting behaviour; for large values of A* where
the accuracy in the noise-free interpolation is good, the effect
of noise is severe and the errors increase proportionally to the
noise. The errors in the second derivative are particularly severe.
This effect can be understoed if we look at the derivatives in
non-dimensional units. The velocity is non-dimensionalised by
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FIG. 12.
dimensions. Dashed line is the interpolated streamline, and the solid line is the exact streamline. R./6 = 0.63. (b) The counterpart of figure 11e for the present
case. Lines of slope —1, —4/3, and —2 are indicated.

the rms velocity and the displacement by the length scale A of
the fiow, viz.

ok
Ax*t

du*

dx*

The discrete approximation for a general interpolation scheme
with noise is

Au* + n* Au* + n*
Y an B

The ervors are thus proporticnal o

r 3 _r
ST (12)
since 6* = S/A. y' is the rms fluctuating velocity, and n* =
a'u’ is the rms error in #’. Physically, Eq. (12} means that for
a given fractional level of noise, n' = n*/u’; the closer the
data points are, then, the error in the derivatives will be greater
(if the errors are uncorrelated). Greater accuracy can be obtained
by increasing the distance between data points &, but then we
lose resolution. Thus, second derivatives can only be accurately
determined for the large-scale fields.

We have tested with uncorrelated noise. But in an experi-
ntent, such as in the PTV experiments for which this interpola-
tion scheme was developed, the errors at nearby points are
correlated because the imaging parameters and the spatial con-
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{(a) A streamline of the Burgers vortex, for the same case as in Fig. 11d, except that the streamline begins at z = 0.01 and spirals in three

figuration are very similar at neighbouring points. This reduces
the un-correlated part of the noise scheme, an effect thar is
similar to the one that we observed in the improved accuracy
of the first derivatives in Section 3.2. The results above with
noise should thus be regarded as the upper bound on the errors.

4. CONTINUITY, STREAMLINES, FRACTALS,
AND SPECTRA

Formally, the local N-point Taylor method does not produce
continuous velocity fields throughout the domain of nterpola-

increasing knf by

&/l =100

2|

0.8 1 1.2 1.4 1.6 1.8 2

wavenumber kfk

FIG. 1}. Log-log plot of the power spectrum from KS fields with varying
ranges of wavelengths. The spectra are averaged from ensembles of 154 flow
realisations, The Kolmogorov scale i is kept fixed and w/8 = 5, and k/k, =
10, 50, and 100.
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fow direction
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FIG. 14. The velocity vectors obtained from the ETH {IHW) water channel. 1300 velocity vectors were obtained from the PTV method of MM93. (a)
The raw data which are the velocittes at random positions inside the observation volume which was 60 mm X 45 mm X 20 mm. (b) The interpolated velocity
field using TN13 onto a regular grid from the same angle of view as in (a). {¢) The inerpolated velocity fiefd from a different angle, showing clearly the
swirling turbulent motions. In all the plots, the coordinates are normalised by the viscous length scale A, = 0.17 mm. (The experiments and visualisation were

produced by Markoe Virant.)

tion—it produces piecewise continuous fields. Each patch of
continuous field is defined as the set of points with the same
nearest 15 data points (for TN13). We can anticipate that this
formal limitation can be reduced by making use of the excess
number of data points within a local patch. Using information
from the nearest 15 data points, rather than just the 10 nearest
points (which gives a unique result), ensures that the discontinu-
ity in the velocity field is minimised because the set of 15
nearest data points changes by just a single point as we move
across from one local patch to a neighbouring paich.

Continvity in the interpolated velocity field was tested by
computing streamlines in a Burgers vortex [4] which is a steady
solution of the Navier-Stokes equations where the action of
strain and viscosity balance to give a vortex core of steady
finite size, B, = V 2#/a, which can be interpreted as the Kolmo-
gorov scale of the vortex tube. In cylindrical coordinates (r, ¢,
z), the vorticity is along the z direction with magnitude w(r) =
aRe,/4m e “_ where v is the kinematic viscosity, Re, = /v,
and vy is the circulation of the vortex; spectfically, y = 27
f: w(r)r dr. This flow is sustained by the following straining
velocity field, of which a is the strain rate,

— = S PR
”z az, U, 2 » M,ﬁ(f) ,Zn_r (1 e i,)' (13)

The streamlines, starting from say r, > 0 are helical, wind into
the vortex core around the z-axis, and are given by

dd _ v
SE = Lo e,

14
dr amr (14)

The Burgers vortex is a complex structure exhibiting the effects
of strain and circnlation and it displays a range of scales defined
by the distance between successive windings of its streamlines,
as described below. It is thus a good field on which to test the
interpolation scheme. In most of our tests the streamlines begin
at 7 = 0 so that they remain in the z = 0 plane, which reduces
the problem to two dimensions. (However, we give an exampie
of a full three-dimensional interpolation case at the end.) We
always take the rate of strain ¢ = 1 and the circulation y = 1,
but we take two different cases of the kinematic viscosity v,
and we also vary the density of the data points. We start with
the case of v = 0.02, which gives k. = 0.2. With 500 data
points uniformly distributed in an area of 1.4 X 1.4 centred on
the vortex core, the spacing of the data § = 0.063, which gives
R./8 == 3.2. This is a case of accurate interpolation with the
TN15 scheme, and Figure 10 confirms this point. It shows that
the interpolated streamline (dashed line) matches the exact
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streamline very closely. Figures 11 show the interpolated
streamlines (dashed lines) against the exact streamline (solid
line) for the case when » = 0.0125 (R, = 0.05). The density
of particles is such that in 11a—!1d we have, respectively,
R/6=105,08, 1.13, 2.25. The interpolated streamline is quite
poor in 11a, but improves progressively as the density of data
points increases. In Fig. 11d, the interpolated streamline re-
mains close to the exact one for a number of turns.

Importantly, there is no discontinuity in any of the interpo-
lated streamlines that we have computed. But how can we
quantify how *‘close’’ the interpolated streamline topology is
to the real one? One measure is the fractal dimension of the
strearnline, in the sense of the Kolmogorov capacity, which is
obtained by the familiar hox counting algorithm. The capacity
is a measure of the space fillingness of a geometric object;
more particularly, it is sensitive to the accumulating pattern
that is displayed by, say a spiral, as it winds in 1o the centre
of the voriex. It is easy to show that for a spiral of the form
r ~ ¢, the capacity (fractal dimension) of the spiral is unique
and equal to D, = 2/(1 + «) in a range of box sizes which is
not too large [19]. Figure 11le shows the log—-log plots of the
number of boxes of size & that cover the spiral against the box
size £ for the interpolated spirals in Figs. 11a-d, and the solid
line is the plot from the exact spiral. The capacity D, is the
{negative) of the slope of the plots. Tt is remarkable that [, is
well defined and equal to the correct value (@ = 1/2 s0 Dy =
4/3) in all the cases except the one with the sparsest data in
Fig. 11a. Thus, the overall spiraling, accumulating topology of
a complex object such as a Burgers vortex streamline is well
preserved by interpolation in cases where the sparsity of the
data points might suggest larger s errors.

We now give an example of interpolation in three dimen-
sions. We take the same case as in Fig. 11d, except now we
start the streamline from z = 0.01 which causes it to spiral in
the third component. The data points are now distributed in a
volume, to give a spacing of 0.079, and hence R./& = 0.63.
Figure 12a shows the exact and interpolated streamlines, and
Fig. 12b shows the fractal plots from which we see three distinct
ranges. The nature of these ranges is outside the scope of this
paper, but the capacities in these ranges are correct, and the
interpolated spiral streamline retains these regimes very well,
as in the two-dimensional case.

Finally, we want to see how accurately statistical quantities
can be obtained from the interpolated data. We have pbtained
the energy spectrum E(k) from the interpolated KS fields aver-
aged from 154 flow realisations. Figure 13 shows the log—log
plot of E(k) against the wavenumber k. E(k) asymptote towards
the Kolmogorov spectrum E(k) ~ k7 as the wavenumber
range of the flow increases. The data spacing &8 is such that
/8 = 5, where 7 is the Kolmogorov scale. This ensures that
all the scales are well resolved.

5. APPLICATION AND DISCUSSION

PTV experiments from the ETH open water channel in July
1993 produced a sequence of coordinate data sets which on
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average yielded about 1300 velocity vectors in an observation
volume at any given time. Figure I14a shows the input data to
TN15 which consists of the measured velocities at the scattered
locations at a particular instant in time. This gave an average
data spacing of nearly 3.5 mm in the observation volume. The
largest energy-containing turbulent scales are approximately
equal to the depth of the flow, namely 35 mm. A measure of
the upper end of the inertial subrange is the Taylor micro-scale
which in this flow is approximately equal to 10 mm, and the
smallest turbulent scale, the Kolmogorov scale, is roughly equal
to 0.5 mm. The mean flow in the streamwise direction was 90
mm/s which gives ¥’ = 5 mm/s and a Reynolds number of
around 3150 based on the channel height. Figure 14b shows
the interpolated data on a regular Cartesian grid of spacing
d, = 4 mm. The arrows are the velocity vectors in a frame
moving with the carriage velocity which was equal to the mean
flow velocity. The interpolation is probably accurate for the
largest scales, but, even so, well-defined swirling motion can
be seen in the body of the fluid, which is clearly seen in Fig.
l4c which gives another angle of view. Interpolation at the
channel wall is not performed because, as we have noted, the
wall is not in the inner region of data points. (The measurements
and visnalisation were produced by Marko Virant.)

To summarise, we have developed a scheme for the general
problem of interpolating scattered velocity field data in two or
three dimensions onto a given set of arbitrary points within the
inner region defined by the data points. The method is based
on a trivariate polynomial scheme, which is shown to be equiva-
lent to a Taylor expansion, Eq. (7), and it has proved to be
highly accurate in the range of parameters for which the length
scale of the flow A is greater than the spacing of the input data
& by a factor of at least 5. The velocities and first derivatives
can be obtained with good accuracy. The second derivatives
of the velocity field require more dense data input.

However, we have found that certain quantities are accurately
preserved even in cases of much lower data density. The accu-
mulating streamline topology of vortex tubes, in both two and
three dimensions, was accurately obtained even with data spac-
ing R.JS == 0.8, and the fractal dimension (Kelmogorov capac-
ity) was extremely well defined. Similarly, statistical quantities
like the power spectrum in a stochastic turbulent field were
accurately obtained from the interpolated velocity field.

Thus, the seeding density of particles in flows depends upon
the application. If all aspects of the turbulent Bow are desired
down to the smallest scales, 1, one would need the spacing
& = (.29 whatever the largest scales. But if the broad features
of streamline topology and statistics are required, then we can
take & < 1.2wm. This is still quite a severe restriction on experi-
ments since it is difficult to resolve down to the Kolmogorov
scale in PTV experiments. One would have to look at small
observation volumes to obtain such a high seeding density.
Nevertheless, scales somewhat larger than the Kolmogorov
scale can be accurately interpolated, which is sufficient for
many applications.
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The first derivatives of the velocity can be obtained also
with reasonable accuracy but the second derivatives are not so
accurate. One needs quite high densities of data corresponding
to more than A = 108 for 10% accuracy.

Noise has little effect on the accuracy of the velocity, and
only a moderate effect on the first derivatives. But the second
derivatives are severely affected by noise in the data, and the
results imply that quantities based on second derivatives can
only be obtained for the large-scale fields.

We have compared the Taylor scheme with the standard
adaptive Gaussian window scheme, Eq. (1), where we found
that the Gaussian window with H = & was the best. The Taylor
schemes performed much better, except for small A% < 2,
where the two schemes are comparable. We have found that
the 15-point Taylor scheme TN15 is the optimum interpolation
scheme. If a certain degree of error in the velocity field is
tolerable, then the speed of the computations can be consider-
ably increased; for 10% error bounds, the speed increases by
nearly an order of magnitude using the method of iterations to
solve the system of linear equations.
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